diff options
| author | Sadeep Madurange <sadeep@asciimx.com> | 2025-12-08 17:34:35 +0800 |
|---|---|---|
| committer | Sadeep Madurange <sadeep@asciimx.com> | 2025-12-08 21:05:19 +0800 |
| commit | 752a06ec0ebf20d6232b13f1ea53fe21fefcefbd (patch) | |
| tree | 690411afad8eb76216417a42de94135214cb2401 /_site/blog/neo4j-a-star-search/index.html | |
| parent | 20b0a045a7dc78f9728837fe5a1be8cf12caae4e (diff) | |
| download | www-752a06ec0ebf20d6232b13f1ea53fe21fefcefbd.tar.gz | |
Fix list indentation.
Diffstat (limited to '_site/blog/neo4j-a-star-search/index.html')
| -rw-r--r-- | _site/blog/neo4j-a-star-search/index.html | 371 |
1 files changed, 371 insertions, 0 deletions
diff --git a/_site/blog/neo4j-a-star-search/index.html b/_site/blog/neo4j-a-star-search/index.html new file mode 100644 index 0000000..0d918c7 --- /dev/null +++ b/_site/blog/neo4j-a-star-search/index.html @@ -0,0 +1,371 @@ +<!DOCTYPE html> +<html> + <head> + <meta charset="utf-8"> + <title>Neo4J A* search</title> + + <head> + <meta charset="utf-8"> + <meta name="viewport" content="width=device-width, initial-scale=1"> + <title>Neo4J A* search</title> + <link rel="stylesheet" href="/assets/css/main.css"> + <link rel="stylesheet" href="/assets/css/skeleton.css"> +</head> + + + + </head> + <body> + + <div id="nav-container" class="container"> + <ul id="navlist" class="left"> + + <li > + <a href="/" class="link-decor-none">hme</a> + </li> + <li class="active"> + <a href="/blog/" class="link-decor-none">blg</a> + </li> + <li > + <a href="/projects/" class="link-decor-none">poc</a> + </li> + <li > + <a href="/about/" class="link-decor-none">abt</a> + </li> + <li><a href="/feed.xml" class="link-decor-none">rss</a></li> + </ul> +</div> + + + + <main> + <div class="container"> + <div class="container-2"> + <h2 class="center" id="title">NEO4J A* SEARCH</h2> + <h6 class="center">14 SEPTEMBER 2025</h5> + <br> + <div class="twocol justify"><p>Back in 2018, we used <a href="https://neo4j.com/" class="external" target="_blank" rel="noopener noreferrer">Neo4J</a> graph database to track the +movement of marine vessels. We were interested in the shortest path a ship +could take through a network of about 13,000 route points. Algorithms based on +graph theory, such as A* search, provide optimal solutions to such problems. +In other words, the set of route points lends itself well to a model based on +graphs.</p> + +<p>A graph is a finite set of vertices, and a subset of vertex pairs (edges). +Edges can have weights. In the case of vessel tracking, the route points form +the vertices of a graph; the routes between them, the edges; and the distances +between them are the weights. For different reasons, people are interested in +minimizing (or maximizing) the weight of a path through a set of vertices. For +instance, we may want to find the shortest path between two ports.</p> + +<p>Given such a graph, an algorithm like Dijkstra’s search could compute the +shortest path between two vertices. In fact, this was the algorithm Neo4J +shipped with at the time. One drawback of Dijkstra’s algorithm is that it +computes all the shortest paths from the source to all other vertices before +terminating at the destination vertex. The exhaustive nature of this search +limited our search to about 4,000 route points.</p> + +<p>The following enhancement to Dijkstra’s search, also known as the A* search, +employs a heuristic to steer the search in the direction of the destination +more quickly. In the case of our network of vessels, which are on the earth’s +surface, spherical distance is a good candidate for a heuristic:</p> + +<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>package org.neo4j.graphalgo.impl; + +import java.util.stream.Stream; +import java.util.stream.StreamSupport; + +import org.neo4j.graphalgo.api.Graph; +import org.neo4j.graphalgo.core.utils.ProgressLogger; +import org.neo4j.graphalgo.core.utils.queue.IntPriorityQueue; +import org.neo4j.graphalgo.core.utils.queue.SharedIntPriorityQueue; +import org.neo4j.graphalgo.core.utils.traverse.SimpleBitSet; +import org.neo4j.graphdb.Direction; +import org.neo4j.graphdb.Node; +import org.neo4j.kernel.internal.GraphDatabaseAPI; + +import com.carrotsearch.hppc.IntArrayDeque; +import com.carrotsearch.hppc.IntDoubleMap; +import com.carrotsearch.hppc.IntDoubleScatterMap; +import com.carrotsearch.hppc.IntIntMap; +import com.carrotsearch.hppc.IntIntScatterMap; + +public class ShortestPathAStar extends Algorithm<ShortestPathAStar> { + + private final GraphDatabaseAPI dbService; + private static final int PATH_END = -1; + + private Graph graph; + private final int nodeCount; + private IntDoubleMap gCosts; + private IntDoubleMap fCosts; + private double totalCost; + private IntPriorityQueue openNodes; + private IntIntMap path; + private IntArrayDeque shortestPath; + private SimpleBitSet closedNodes; + private final ProgressLogger progressLogger; + + public static final double NO_PATH_FOUND = -1.0; + + public ShortestPathAStar( + final Graph graph, + final GraphDatabaseAPI dbService) { + + this.graph = graph; + this.dbService = dbService; + + nodeCount = Math.toIntExact(graph.nodeCount()); + gCosts = new IntDoubleScatterMap(nodeCount); + fCosts = new IntDoubleScatterMap(nodeCount); + openNodes = SharedIntPriorityQueue.min( + nodeCount, + fCosts, + Double.MAX_VALUE); + path = new IntIntScatterMap(nodeCount); + closedNodes = new SimpleBitSet(nodeCount); + shortestPath = new IntArrayDeque(); + progressLogger = getProgressLogger(); + } + + public ShortestPathAStar compute( + final long startNode, + final long goalNode, + final String propertyKeyLat, + final String propertyKeyLon, + final Direction direction) { + + reset(); + + final int startNodeInternal = + graph.toMappedNodeId(startNode); + final double startNodeLat = + getNodeCoordinate(startNodeInternal, propertyKeyLat); + final double startNodeLon = + getNodeCoordinate(startNodeInternal, propertyKeyLon); + + final int goalNodeInternal = + graph.toMappedNodeId(goalNode); + final double goalNodeLat = + getNodeCoordinate(goalNodeInternal, propertyKeyLat); + final double goalNodeLon = + getNodeCoordinate(goalNodeInternal, propertyKeyLon); + + final double initialHeuristic = + computeHeuristic(startNodeLat, + startNodeLon, + goalNodeLat, + goalNodeLon); + + gCosts.put(startNodeInternal, 0.0); + fCosts.put(startNodeInternal, initialHeuristic); + openNodes.add(startNodeInternal, 0.0); + + run(goalNodeInternal, + propertyKeyLat, + propertyKeyLon, + direction); + + if (path.containsKey(goalNodeInternal)) { + totalCost = gCosts.get(goalNodeInternal); + int node = goalNodeInternal; + while (node != PATH_END) { + shortestPath.addFirst(node); + node = path.getOrDefault(node, PATH_END); + } + } + return this; + } + + private void run( + final int goalNodeId, + final String propertyKeyLat, + final String propertyKeyLon, + final Direction direction) { + + final double goalLat = + getNodeCoordinate(goalNodeId, propertyKeyLat); + final double goalLon = + getNodeCoordinate(goalNodeId, propertyKeyLon); + + while (!openNodes.isEmpty() && running()) { + int currentNodeId = openNodes.pop(); + if (currentNodeId == goalNodeId) { + return; + } + + closedNodes.put(currentNodeId); + + double currentNodeCost = + this.gCosts.getOrDefault( + currentNodeId, + Double.MAX_VALUE); + + graph.forEachRelationship( + currentNodeId, + direction, + (source, target, relationshipId, weight) -> { + double neighbourLat = + getNodeCoordinate(target, propertyKeyLat); + double neighbourLon = + getNodeCoordinate(target, propertyKeyLon); + double heuristic = + computeHeuristic( + neighbourLat, + neighbourLon, + goalLat, + goalLon); + + updateCosts( + source, + target, + weight + currentNodeCost, + heuristic); + + if (!closedNodes.contains(target)) { + openNodes.add(target, 0); + } + return true; + }); + + progressLogger.logProgress( + (double) currentNodeId / (nodeCount - 1)); + } + } + + private double computeHeuristic( + final double lat1, + final double lon1, + final double lat2, + final double lon2) { + + final int earthRadius = 6371; + final double kmToNM = 0.539957; + final double latDistance = Math.toRadians(lat2 - lat1); + final double lonDistance = Math.toRadians(lon2 - lon1); + final double a = Math.sin(latDistance / 2) + * Math.sin(latDistance / 2) + + Math.cos(Math.toRadians(lat1)) + * Math.cos(Math.toRadians(lat2)) + * Math.sin(lonDistance / 2) + * Math.sin(lonDistance / 2); + final double c = 2 + * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); + final double distance = earthRadius * c * kmToNM; + return distance; + } + + private double getNodeCoordinate( + final int nodeId, + final String coordinateType) { + + final long neo4jId = graph.toOriginalNodeId(nodeId); + final Node node = dbService.getNodeById(neo4jId); + return (double) node.getProperty(coordinateType); + } + + private void updateCosts( + final int source, + final int target, + final double newCost, + final double heuristic) { + + final double oldCost = + gCosts.getOrDefault(target, Double.MAX_VALUE); + + if (newCost < oldCost) { + gCosts.put(target, newCost); + fCosts.put(target, newCost + heuristic); + path.put(target, source); + } + } + + private void reset() { + closedNodes.clear(); + openNodes.clear(); + gCosts.clear(); + fCosts.clear(); + path.clear(); + shortestPath.clear(); + totalCost = NO_PATH_FOUND; + } + + public Stream<Result> resultStream() { + return StreamSupport.stream( + shortestPath.spliterator(), false) + .map(cursor -> new Result( + graph.toOriginalNodeId(cursor.value), + gCosts.get(cursor.value))); + } + + public IntArrayDeque getFinalPath() { + return shortestPath; + } + + public double getTotalCost() { + return totalCost; + } + + public int getPathLength() { + return shortestPath.size(); + } + + @Override + public ShortestPathAStar me() { + return this; + } + + @Override + public ShortestPathAStar release() { + graph = null; + gCosts = null; + fCosts = null; + openNodes = null; + path = null; + shortestPath = null; + closedNodes = null; + return this; + } + + public static class Result { + + /** + * the neo4j node id + */ + public final Long nodeId; + + /** + * cost to reach the node from startNode + */ + public final Double cost; + + public Result(Long nodeId, Double cost) { + this.nodeId = nodeId; + this.cost = cost; + } + } +} +</code></pre></div></div> + +<p>The heuristic function is domain-specific. If chosen wisely, it can +significantly speed up the search. In our case, we achieved a 300x speedup, +enabling us to expand our search from 4,000 to 13,000 route points. The <a href="https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases/tag/3.4.0.0" class="external" target="_blank" rel="noopener noreferrer">v3.4.0</a> of the +Neo4J graph algorithms shipped with the A* search algorithm.</p> + +</div> + <p class="post-author right">by W. D. Sadeep Madurange</p> + </div> + </div> + </main> + + <div class="footer"> + <div class="container"> + <div class="twelve columns right container-2"> + <p id="footer-text">© ASCIIMX - 2025</p> + </div> + </div> +</div> + + + </body> +</html> |
