1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
#include <stdint.h>
#include <stdlib.h>
#include <avr/wdt.h>
#include <avr/sleep.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "fpm.h"
#include "uart.h"
#define BATMIN 5100
#define SERVO_PIN PB1
#define SERVO_DDR DDRB
#define PWM_MIN 500
#define PWM_MID 1600
#define PWM_MAX 2550
#define PWM_TOP 19999
#define LED_PIN PB5
#define LED_DDR DDRB
#define LED_PORT PORTB
#define PWR_BATCHK PB2
#define PWR_SERVO PB3
#define PWR_FPM PB4
#define PWR_DDR DDRB
#define PWR_PORT PORTB
#define FRONT_UNLOCK_PIN PD2
#define FRONT_LOCK_PIN PD3
#define ENROLL_PIN PD4
#define BACK_LOCK_PIN PD5
#define BACK_UNLOCK_PIN PD6
#define INPUT_DDR DDRD
#define INPUT_PORT PORTD
#define FPM_UNLOCK_INT INT0
#define FPM_INT_VEC INT0_vect
#define FRONT_LOCK_INT PCINT19
#define ENROLL_INT PCINT20
#define BACK_LOCK_INT PCINT21
#define BACK_UNLOCK_INT PCINT22
#define BTN_INT_VEC PCINT2_vect
enum CTRL {
NONE = 0,
LOCK_FRONT = 1,
LOCK_BACK = 2,
UNLOCK_FRONT = 3,
UNLOCK_BACK = 4,
ENROLL = 5
};
static volatile enum CTRL cmd = NONE;
static inline void pwron_fpm(void)
{
PWR_PORT &= ~(1 << PWR_FPM);
_delay_ms(50);
}
static inline void pwroff_fpm(void)
{
PWR_PORT |= (1 << PWR_FPM);
}
static inline void pwron_servo(void)
{
PWR_PORT |= (1 << PWR_SERVO);
}
static inline void pwroff_servo(void)
{
PWR_PORT &= ~(1 << PWR_SERVO);
}
static inline void lock(void)
{
pwron_servo();
OCR1A = PWM_MID;
_delay_ms(500);
pwroff_servo();
}
static inline void unlock(void)
{
pwron_servo();
OCR1A = PWM_MAX;
_delay_ms(500);
pwroff_servo();
}
static inline void flash_led(void)
{
for (int i = 0; i < 4; i++) {
LED_PORT |= (1 << LED_PIN);
_delay_ms(70);
LED_PORT &= ~(1 << LED_PIN);
_delay_ms(70);
}
}
static inline void pwron_batchk(void)
{
PWR_PORT &= ~(1 << PWR_BATCHK);
}
static inline void pwroff_batchk(void)
{
PWR_PORT |= (1 << PWR_BATCHK);
}
static void check_bat(void)
{
uint16_t vbg, vcc;
pwron_batchk();
ADMUX |= (1 << REFS1) | (1 << REFS0);
ADCSRA |= (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1); /* clk: 50-200 kHz */
_delay_us(500); /* https://www.sciencetronics.com/greenphotons/?p=1521 */
ADCSRA |= (1 << ADSC);
while (ADCSRA & (1 << ADSC))
;
ADCSRA &= ~(1 << ADEN);
vbg = (1100UL * ADC) / 1024;
ADCSRA &= ~(1 << ADEN);
pwroff_batchk();
vcc = (vbg * 66) / 10; /* 56k/10k divider */
if (vcc < BATMIN)
flash_led();
}
int main(void)
{
uint16_t id;
/* disable wdt */
cli();
wdt_reset();
MCUSR &= ~(1 << WDRF);
WDTCSR |= (1 << WDCE) | (1 << WDE);
WDTCSR = 0x00;
PWR_DDR |= (1 << PWR_BATCHK) | (1 << PWR_FPM) | (1 << PWR_SERVO);
pwroff_batchk();
uart_init();
pwron_fpm();
fpm_init();
/* servo */
TCCR1A |= (1 << WGM11);
TCCR1B |= (1 << WGM12) | (1 << WGM13);
TCCR1B |= (1 << CS11);
ICR1 = PWM_TOP;
TCCR1A |= (1 << COM1A1);
SERVO_DDR |= (1 << SERVO_PIN);
/* battery check */
LED_DDR |= (1 << LED_PIN);
LED_PORT &= ~(1 << LED_PIN);
/* input ports */
INPUT_DDR &= ~((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) |
(1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) |
(1 << ENROLL_PIN));
INPUT_PORT |= ((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) |
(1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) |
(1 << ENROLL_PIN));
EICRA = 0b00000000;
EIMSK = (1 << FPM_UNLOCK_INT);
PCICR |= (1 << PCIE2);
PCMSK2 |= ((1 << FRONT_LOCK_INT) | (1 << ENROLL_INT) |
(1 << BACK_LOCK_INT) | (1 << BACK_UNLOCK_INT));
for (;;) {
check_bat();
switch(cmd) {
case LOCK_FRONT:
lock();
fpm_led(FLASH, RED, 1);
break;
case LOCK_BACK:
lock();
break;
case UNLOCK_FRONT:
if (fpm_match()) {
fpm_led(BREATHE, BLUE, 1);
unlock();
} else {
fpm_led(BREATHE, RED, 1);
}
break;
case UNLOCK_BACK:
unlock();
fpm_led(FLASH, BLUE, 1);
break;
case ENROLL:
id = fpm_match();
if (id == 1 || id == 2) {
fpm_led(BREATHE, BLUE, 1);
_delay_ms(1000);
if (fpm_enroll())
fpm_led(BREATHE, BLUE, 1);
else
fpm_led(BREATHE, RED, 1);
}
break;
default:
break;
}
cmd = NONE;
_delay_ms(500);
pwroff_fpm();
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
sleep_enable();
sleep_bod_disable();
sei();
sleep_cpu();
cli();
sleep_disable();
pwron_fpm();
fpm_init();
}
return 0;
}
static inline int is_pressed(uint8_t btn)
{
if (!((PIND >> btn) & 0x01)) {
_delay_ms(50);
return !((PIND >> btn) & 0x01);
}
return 0;
}
ISR(FPM_INT_VEC)
{
cmd = UNLOCK_FRONT;
}
ISR(BTN_INT_VEC)
{
cli();
if (is_pressed(FRONT_LOCK_PIN))
cmd = LOCK_FRONT;
else if (is_pressed(BACK_LOCK_PIN))
cmd = LOCK_BACK;
else if (is_pressed(BACK_UNLOCK_PIN))
cmd = UNLOCK_BACK;
else if (is_pressed(ENROLL_PIN))
cmd = ENROLL;
sei();
}
|