1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#include <stdint.h>
#include <stdlib.h>
#include <avr/wdt.h>
#include <avr/sleep.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "fpm.h"
#define FRONT_UNLOCK_PIN PD2
#define FRONT_LOCK_PIN PD3
#define ENROLL_PIN PD4
#define BACK_LOCK_PIN PD5
#define BACK_UNLOCK_PIN PD6
#define INPUT_DDR DDRD
#define INPUT_PORT PORTD
#define FPM_UNLOCK_INT INT0
#define FPM_INT_VEC INT0_vect
#define FRONT_LOCK_INT PCINT19
#define ENROLL_INT PCINT20
#define BACK_LOCK_INT PCINT21
#define BACK_UNLOCK_INT PCINT22
#define BTN_INT_VEC PCINT2_vect
#define SERVO_PIN PB1
#define SERVO_DDR DDRB
#define PWM_MIN 500
#define PWM_MID 1600
#define PWM_MAX 2550
#define PWM_TOP 20000
#define VCC_MIN 4900
#define LED_PIN PB5
#define LED_DDR DDRB
#define LED_PORT PORTB
/* Measure vcc by measuring known internal 1.1v bandgap
* reference voltage against AVCC.
*/
uint16_t getvcc(void)
{
uint16_t vcc;
ADMUX |= (1 << REFS0);
ADMUX |= (1 << MUX3) | (1 << MUX2) | (1 << MUX1);
ADCSRA |= (1 << ADEN) | (1 << ADPS2) | (1 << ADPS0);
// https://www.sciencetronics.com/greenphotons/?p=1521
_delay_us(500);
ADCSRA |= (1 << ADSC);
while (ADCSRA & (1 << ADSC))
;
vcc = (1100UL * 1023 / ADC);
ADCSRA &= ~(1 << ADEN);
return vcc;
}
static inline void lock(void)
{
OCR1A = PWM_MID;
_delay_ms(100);
OCR1A = PWM_TOP;
}
static inline void unlock(void)
{
OCR1A = PWM_MAX;
_delay_ms(100);
OCR1A = PWM_TOP;
}
int main(void)
{
/* disable watchdog timer */
cli();
wdt_reset();
MCUSR &= ~(1 << WDRF);
WDTCSR |= (1 << WDCE) | (1 << WDE);
WDTCSR = 0x00;
/* battery check */
LED_DDR |= (1 << LED_PIN);
LED_PORT &= ~(1 << LED_PIN);
for (int i = 0; i < 4; i++) {
LED_PORT |= (1 << LED_PIN);
_delay_ms(70);
LED_PORT &= ~(1 << LED_PIN);
_delay_ms(70);
}
/* init input ports */
INPUT_DDR &= ~((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) |
(1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) |
(1 << ENROLL_PIN));
INPUT_PORT |= ((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) |
(1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) |
(1 << ENROLL_PIN));
EICRA = 0b00000000;
EIMSK = (1 << FPM_UNLOCK_INT);
PCICR |= (1 << PCIE2);
PCMSK2 |= ((1 << FRONT_LOCK_INT) | (1 << ENROLL_INT) |
(1 << BACK_LOCK_INT) | (1 << BACK_UNLOCK_INT));
/* init servo */
ICR1 = PWM_TOP;
TCCR1A |= (1 << WGM11) | (1 << COM1A1);
TCCR1B |= (1 << WGM13) | (1 << CS11);
SERVO_DDR |= (1 << SERVO_PIN);
fpm_init();
sei();
for (;;) {
if (getvcc() < VCC_MIN)
LED_PORT |= (1 << LED_PIN);
sleep_bod_disable();
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
sleep_mode();
}
return 0;
}
static inline int is_pressed(uint8_t btn)
{
if (!((PIND >> btn) & 0x01)) {
_delay_ms(50);
return !((PIND >> btn) & 0x01);
}
return 0;
}
ISR(FPM_INT_VEC)
{
cli();
if (fpm_match()) {
unlock();
fpm_led(BREATHE, BLUE, 1);
} else {
fpm_led(BREATHE, RED, 1);
}
sei();
}
ISR(BTN_INT_VEC)
{
uint16_t id;
cli();
if (is_pressed(FRONT_LOCK_PIN)) {
lock();
fpm_led(FLASH, RED, 1);
} else if (is_pressed(BACK_LOCK_PIN)) {
lock();
fpm_led(FLASH, RED, 1);
} else if (is_pressed(BACK_UNLOCK_PIN)) {
unlock();
fpm_led(FLASH, BLUE, 1);
} else if (is_pressed(ENROLL_PIN)) {
id = fpm_match();
if (id == 1 || id == 2) {
fpm_led(BREATHE, BLUE, 1);
_delay_ms(1000);
if (fpm_enroll())
fpm_led(BREATHE, BLUE, 1);
else
fpm_led(BREATHE, RED, 1);
} else
fpm_led(BREATHE, RED, 1);
}
sei();
}
|