blob: 82446815bcf6c6f17e2ae992bacd6168432189e4 (
plain)
1
|
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/feed.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-24T18:02:31+08:00</updated><id>/feed.xml</id><title type="html">ASCIIMX | Log</title><author><name>W. D. Sadeep Madurange</name></author><entry><title type="html">Recreating the Matrix rain with ANSI escape sequences</title><link href="/log/matrix-digital-rain/" rel="alternate" type="text/html" title="Recreating the Matrix rain with ANSI escape sequences" /><published>2025-12-21T00:00:00+08:00</published><updated>2025-12-21T00:00:00+08:00</updated><id>/log/matrix-digital-rain</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[My 2022 implementation of the Matrix rain had too many loose ends. Unicode support was inflexible: the character set had to be a single contiguous block with no way to mix ASCII with something like Katakana; Phosphor decay level was stored in a dedicated array–still don’t understand why I did that when I had already used bit-packing for the RGB channels; The algorithm was difficult to decipher. The 2022 version worked, but that’s not the same thing as correct.]]></summary></entry><entry><title type="html">How to manage Suckless software installations</title><link href="/log/suckless-software/" rel="alternate" type="text/html" title="How to manage Suckless software installations" /><published>2025-11-30T00:00:00+08:00</published><updated>2025-11-30T00:00:00+08:00</updated><id>/log/suckless-software</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Since suckless software requires users to modify the source code and recompile to customize, I need a way to maintain patches over the long term while retaining the ability to upgrade the software as new versions are released.]]></summary></entry><entry><title type="html">Fingerprint door lock</title><link href="/log/fpm-door-lock/" rel="alternate" type="text/html" title="Fingerprint door lock" /><published>2025-08-18T00:00:00+08:00</published><updated>2025-08-18T00:00:00+08:00</updated><id>/log/fpm-door-lock</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This project features a fingerprint door lock powered by an ATmega328P microcontroller.]]></summary></entry><entry><title type="html">On the use of MOSFETs as electronic switches</title><link href="/log/mosfet-switches/" rel="alternate" type="text/html" title="On the use of MOSFETs as electronic switches" /><published>2025-06-22T00:00:00+08:00</published><updated>2025-06-22T00:00:00+08:00</updated><id>/log/mosfet-switches</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Recently, I needed a low-power circuit for one of my battery-operated projects. Much of the system’s power savings depended on its ability to electronically switch off components, such as servos, that draw high levels of quiescent currents. My search for a solution led me to MOSFETs, transistors capable of controlling circuits operating at voltages far above their own.]]></summary></entry><entry><title type="html">How to configure ATmega328P microcontrollers to run at 3.3V and 5V</title><link href="/log/arduino-uno/" rel="alternate" type="text/html" title="How to configure ATmega328P microcontrollers to run at 3.3V and 5V" /><published>2025-06-10T00:00:00+08:00</published><updated>2025-06-10T00:00:00+08:00</updated><id>/log/arduino-uno</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This is a quick reference for wiring up ATmega328P ICs to run at 5V and 3.3V. While the 5V configuration is common, the 3.3V configuration can be useful in low-power applications and when interfacing with parts that themselves run at 3.3V. In this guide, the 5V setup is configured with a 16MHz crystal oscillator, while the 3.3V configuration makes use of an 8MHz crystal oscillator.]]></summary></entry><entry><title type="html">My first PCB</title><link href="/log/my-first-pcb/" rel="alternate" type="text/html" title="My first PCB" /><published>2025-04-26T00:00:00+08:00</published><updated>2025-04-26T00:00:00+08:00</updated><id>/log/my-first-pcb</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[In 2023, I started tinkering with DIY electronics as a hobby. Until now, I’ve been using development boards like the Arduino Uno and ESP-32-WROOM so that I can focus on the software. Recently, I decided to step outside of my comfort zone and design a PCB from scratch for a door lock I’m working on.]]></summary></entry><entry><title type="html">Bumblebee: browser automation</title><link href="/log/bumblebee/" rel="alternate" type="text/html" title="Bumblebee: browser automation" /><published>2025-04-02T00:00:00+08:00</published><updated>2025-04-02T00:00:00+08:00</updated><id>/log/bumblebee</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Bumblebee is a tool I built for one of my employers to automate the generation of web scraping scripts.]]></summary></entry><entry><title type="html">How to set up ATSAM3X8E microcontrollers for bare-metal programming in C</title><link href="/log/arduino-due/" rel="alternate" type="text/html" title="How to set up ATSAM3X8E microcontrollers for bare-metal programming in C" /><published>2024-09-16T00:00:00+08:00</published><updated>2024-09-16T00:00:00+08:00</updated><id>/log/arduino-due</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This article is a step-by-step guide for programming bare-metal ATSAM3X8E chips found on Arduino Due boards. It also includes notes on the chip’s memory layout relevant for writing linker scripts. The steps described in this article were tested on an OpenBSD workstation.]]></summary></entry><entry><title type="html">Etlas: e-paper dashboard</title><link href="/log/etlas/" rel="alternate" type="text/html" title="Etlas: e-paper dashboard" /><published>2024-09-05T00:00:00+08:00</published><updated>2024-09-05T00:00:00+08:00</updated><id>/log/etlas</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Etlas is a news, stock market, and weather tracker powered by an ESP32 NodeMCU D1, featuring a 7.5-inch Waveshare e-paper display and a DHT22 sensor module.]]></summary></entry><entry><title type="html">Experimental e-reader</title><link href="/log/e-reader/" rel="alternate" type="text/html" title="Experimental e-reader" /><published>2023-10-24T00:00:00+08:00</published><updated>2023-10-24T00:00:00+08:00</updated><id>/log/e-reader</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This project features an experimental e-reader powered by an ESP-WROOM-32 development board and a 7.5-inch Waveshare e-paper display built with the intention of learning about e-paper displays.]]></summary></entry></feed>
|