diff options
| -rw-r--r-- | _projects/fpm-door-lock.md | 14 | ||||
| -rw-r--r-- | _site/feed.xml | 2 | ||||
| -rw-r--r-- | _site/posts.xml | 2 | ||||
| -rw-r--r-- | _site/projects/fpm-door-lock/index.html | 14 |
4 files changed, 16 insertions, 16 deletions
diff --git a/_projects/fpm-door-lock.md b/_projects/fpm-door-lock.md index 2725f36..43b0387 100644 --- a/_projects/fpm-door-lock.md +++ b/_projects/fpm-door-lock.md @@ -40,15 +40,15 @@ sleep. ## Embedded software -The embedded software, written in C with the help of the AVR toolchain, -includes a driver for the sensor, servo control routines, and a battery -monitoring system. +The embedded software, written in C, includes a driver for the sensor, servo +control routines, and a battery monitoring system. In addition to controlling the sensor and the servo, the program strives to -maintain precise control over the sleep mode, as well as when the peripherals -are activated and for how long they remain active. I thoroughly enjoyed writing -the embedded software. There's something magical about being able to alter the -physical world around you by uttering a few lines of C code. +maintain precise control over the microcontroller's sleep modes, as well as +when the peripherals are activated and for how long they remain active. I +thoroughly enjoyed writing the embedded software. There's something magical +about being able to alter the physical world around you by uttering a few lines +of C code. The source code of the project, which includes a driver for the R503 fingerprint sensor module, is enclosed in the tarball linked at the end of the diff --git a/_site/feed.xml b/_site/feed.xml index af86b51..f7141cf 100644 --- a/_site/feed.xml +++ b/_site/feed.xml @@ -1 +1 @@ -<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/feed.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-07T17:48:20+08:00</updated><id>/feed.xml</id><title type="html">ASCIIMX | Archive</title><author><name>Wickramage Don Sadeep Madurange</name></author><entry><title type="html">How I manage Suckless software packages</title><link href="/archive/suckless-software/" rel="alternate" type="text/html" title="How I manage Suckless software packages" /><published>2025-11-30T00:00:00+08:00</published><updated>2025-11-30T00:00:00+08:00</updated><id>/archive/suckless-software</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Since suckless software requires users to modify the source code and recompile to customize, I need a way to maintain patches over the long term while retaining the ability to upgrade the software as new versions are released.]]></summary></entry><entry><title type="html">Neo4J A* search</title><link href="/archive/neo4j-a-star-search/" rel="alternate" type="text/html" title="Neo4J A* search" /><published>2025-09-14T00:00:00+08:00</published><updated>2025-09-14T00:00:00+08:00</updated><id>/archive/neo4j-a-star-search</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Back in 2018, we used Neo4J graph database to track the movement of marine vessels. We were interested in the shortest path a ship could take through a network of about 13,000 route points. Algorithms based on graph theory, such as A* search, provide optimal solutions to such problems. In other words, the set of route points lends itself well to a model based on graphs.]]></summary></entry><entry><title type="html">MOSFETs as electronic switches</title><link href="/archive/mosfet-switches/" rel="alternate" type="text/html" title="MOSFETs as electronic switches" /><published>2025-06-22T00:00:00+08:00</published><updated>2025-06-22T00:00:00+08:00</updated><id>/archive/mosfet-switches</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Recently, I needed a low-power circuit for one of my battery-operated projects. Much of the system’s power savings depended on its ability to electronically switch off components, such as servos, that draw high levels of quiescent currents. My search for a solution led me to MOSFETs, transistors capable of controlling circuits operating at voltages far above their own.]]></summary></entry><entry><title type="html">How to configure ATmega328P microcontrollers to run at 3.3V and 5V</title><link href="/archive/arduino-uno/" rel="alternate" type="text/html" title="How to configure ATmega328P microcontrollers to run at 3.3V and 5V" /><published>2025-04-10T00:00:00+08:00</published><updated>2025-04-10T00:00:00+08:00</updated><id>/archive/arduino-uno</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[This is a quick reference for wiring up ATmega328P ICs to run at 5V and 3.3V. While the 5V configuration is common, the 3.3V configuration can be useful in low-power applications and when interfacing with parts that themselves run at 3.3V. In this guide, the 5V setup is configured with a 16MHz crystal oscillator, while the 3.3V configuration makes use of an 8MHz crystal oscillator.]]></summary></entry><entry><title type="html">How to set up ATSAM3X8E microcontrollers for bare-metal programming in C</title><link href="/archive/arduino-due/" rel="alternate" type="text/html" title="How to set up ATSAM3X8E microcontrollers for bare-metal programming in C" /><published>2024-10-05T00:00:00+08:00</published><updated>2024-10-05T00:00:00+08:00</updated><id>/archive/arduino-due</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[This article is a step-by-step guide for programming bare-metal ATSAM3X8E chips found on Arduino Due boards. It also includes notes on the chip’s memory layout relevant for writing linker scripts. The steps described in this article were tested on an OpenBSD workstation.]]></summary></entry></feed>
\ No newline at end of file +<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/feed.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-07T17:58:17+08:00</updated><id>/feed.xml</id><title type="html">ASCIIMX | Archive</title><author><name>Wickramage Don Sadeep Madurange</name></author><entry><title type="html">How I manage Suckless software packages</title><link href="/archive/suckless-software/" rel="alternate" type="text/html" title="How I manage Suckless software packages" /><published>2025-11-30T00:00:00+08:00</published><updated>2025-11-30T00:00:00+08:00</updated><id>/archive/suckless-software</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Since suckless software requires users to modify the source code and recompile to customize, I need a way to maintain patches over the long term while retaining the ability to upgrade the software as new versions are released.]]></summary></entry><entry><title type="html">Neo4J A* search</title><link href="/archive/neo4j-a-star-search/" rel="alternate" type="text/html" title="Neo4J A* search" /><published>2025-09-14T00:00:00+08:00</published><updated>2025-09-14T00:00:00+08:00</updated><id>/archive/neo4j-a-star-search</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Back in 2018, we used Neo4J graph database to track the movement of marine vessels. We were interested in the shortest path a ship could take through a network of about 13,000 route points. Algorithms based on graph theory, such as A* search, provide optimal solutions to such problems. In other words, the set of route points lends itself well to a model based on graphs.]]></summary></entry><entry><title type="html">MOSFETs as electronic switches</title><link href="/archive/mosfet-switches/" rel="alternate" type="text/html" title="MOSFETs as electronic switches" /><published>2025-06-22T00:00:00+08:00</published><updated>2025-06-22T00:00:00+08:00</updated><id>/archive/mosfet-switches</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[Recently, I needed a low-power circuit for one of my battery-operated projects. Much of the system’s power savings depended on its ability to electronically switch off components, such as servos, that draw high levels of quiescent currents. My search for a solution led me to MOSFETs, transistors capable of controlling circuits operating at voltages far above their own.]]></summary></entry><entry><title type="html">How to configure ATmega328P microcontrollers to run at 3.3V and 5V</title><link href="/archive/arduino-uno/" rel="alternate" type="text/html" title="How to configure ATmega328P microcontrollers to run at 3.3V and 5V" /><published>2025-04-10T00:00:00+08:00</published><updated>2025-04-10T00:00:00+08:00</updated><id>/archive/arduino-uno</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[This is a quick reference for wiring up ATmega328P ICs to run at 5V and 3.3V. While the 5V configuration is common, the 3.3V configuration can be useful in low-power applications and when interfacing with parts that themselves run at 3.3V. In this guide, the 5V setup is configured with a 16MHz crystal oscillator, while the 3.3V configuration makes use of an 8MHz crystal oscillator.]]></summary></entry><entry><title type="html">How to set up ATSAM3X8E microcontrollers for bare-metal programming in C</title><link href="/archive/arduino-due/" rel="alternate" type="text/html" title="How to set up ATSAM3X8E microcontrollers for bare-metal programming in C" /><published>2024-10-05T00:00:00+08:00</published><updated>2024-10-05T00:00:00+08:00</updated><id>/archive/arduino-due</id><author><name>Wickramage Don Sadeep Madurange</name></author><summary type="html"><![CDATA[This article is a step-by-step guide for programming bare-metal ATSAM3X8E chips found on Arduino Due boards. It also includes notes on the chip’s memory layout relevant for writing linker scripts. The steps described in this article were tested on an OpenBSD workstation.]]></summary></entry></feed>
\ No newline at end of file diff --git a/_site/posts.xml b/_site/posts.xml index c3ebfa5..b37a595 100644 --- a/_site/posts.xml +++ b/_site/posts.xml @@ -1 +1 @@ -<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/posts.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-07T17:48:20+08:00</updated><id>/posts.xml</id><title type="html">ASCIIMX</title><author><name>Wickramage Don Sadeep Madurange</name></author></feed>
\ No newline at end of file +<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/posts.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-07T17:58:17+08:00</updated><id>/posts.xml</id><title type="html">ASCIIMX</title><author><name>Wickramage Don Sadeep Madurange</name></author></feed>
\ No newline at end of file diff --git a/_site/projects/fpm-door-lock/index.html b/_site/projects/fpm-door-lock/index.html index 025a9e1..96b1d2e 100644 --- a/_site/projects/fpm-door-lock/index.html +++ b/_site/projects/fpm-door-lock/index.html @@ -78,15 +78,15 @@ sleep.</p> <h2 id="embedded-software">Embedded software</h2> -<p>The embedded software, written in C with the help of the AVR toolchain, -includes a driver for the sensor, servo control routines, and a battery -monitoring system.</p> +<p>The embedded software, written in C, includes a driver for the sensor, servo +control routines, and a battery monitoring system.</p> <p>In addition to controlling the sensor and the servo, the program strives to -maintain precise control over the sleep mode, as well as when the peripherals -are activated and for how long they remain active. I thoroughly enjoyed writing -the embedded software. There’s something magical about being able to alter the -physical world around you by uttering a few lines of C code.</p> +maintain precise control over the microcontroller’s sleep modes, as well as +when the peripherals are activated and for how long they remain active. I +thoroughly enjoyed writing the embedded software. There’s something magical +about being able to alter the physical world around you by uttering a few lines +of C code.</p> <p>The source code of the project, which includes a driver for the R503 fingerprint sensor module, is enclosed in the tarball linked at the end of the |
