summaryrefslogtreecommitdiffstats
path: root/_site
diff options
context:
space:
mode:
authorSadeep Madurange <sadeep@asciimx.com>2025-12-11 22:00:21 +0800
committerSadeep Madurange <sadeep@asciimx.com>2025-12-11 22:00:21 +0800
commit43a75ff6bff512a05b99b987395f81d603eb2964 (patch)
tree84ab72fb4d9b9c6a291d3e3b3e49d2eae1bfaa20 /_site
parentab7169b16a8e1ce48f50faa51268ca2b964244e9 (diff)
downloadwww-43a75ff6bff512a05b99b987395f81d603eb2964.tar.gz
Fix unit gaps in e-reader.term
Diffstat (limited to '_site')
-rw-r--r--_site/feed.xml2
-rw-r--r--_site/posts.xml2
-rw-r--r--_site/projects/e-reader/index.html10
3 files changed, 7 insertions, 7 deletions
diff --git a/_site/feed.xml b/_site/feed.xml
index 9010410..8a973b4 100644
--- a/_site/feed.xml
+++ b/_site/feed.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/feed.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-11T21:18:26+08:00</updated><id>/feed.xml</id><title type="html">ASCIIMX | Blog</title><author><name>W. D. Sadeep Madurange</name></author><entry><title type="html">How I manage Suckless software installations</title><link href="/blog/suckless-software/" rel="alternate" type="text/html" title="How I manage Suckless software installations" /><published>2025-11-30T00:00:00+08:00</published><updated>2025-11-30T00:00:00+08:00</updated><id>/blog/suckless-software</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Since suckless software requires users to modify the source code and recompile to customize, I need a way to maintain patches over the long term while retaining the ability to upgrade the software as new versions are released.]]></summary></entry><entry><title type="html">Neo4J A* search</title><link href="/blog/neo4j-a-star-search/" rel="alternate" type="text/html" title="Neo4J A* search" /><published>2025-09-14T00:00:00+08:00</published><updated>2025-09-14T00:00:00+08:00</updated><id>/blog/neo4j-a-star-search</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Back in 2018, we used Neo4J graph database to track the movement of marine vessels. We were interested in the shortest path a ship could take through a network of about 13,000 route points. Algorithms based on graph theory, such as A* search, provide optimal solutions to such problems. In other words, the set of route points lends itself well to a model based on graphs.]]></summary></entry><entry><title type="html">MOSFETs as electronic switches</title><link href="/blog/mosfet-switches/" rel="alternate" type="text/html" title="MOSFETs as electronic switches" /><published>2025-06-22T00:00:00+08:00</published><updated>2025-06-22T00:00:00+08:00</updated><id>/blog/mosfet-switches</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Recently, I needed a low-power circuit for one of my battery-operated projects. Much of the system’s power savings depended on its ability to electronically switch off components, such as servos, that draw high levels of quiescent currents. My search for a solution led me to MOSFETs, transistors capable of controlling circuits operating at voltages far above their own.]]></summary></entry><entry><title type="html">How to configure ATmega328P microcontrollers to run at 3.3V and 5V</title><link href="/blog/arduino-uno/" rel="alternate" type="text/html" title="How to configure ATmega328P microcontrollers to run at 3.3V and 5V" /><published>2025-04-10T00:00:00+08:00</published><updated>2025-04-10T00:00:00+08:00</updated><id>/blog/arduino-uno</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This is a quick reference for wiring up ATmega328P ICs to run at 5V and 3.3V. While the 5V configuration is common, the 3.3V configuration can be useful in low-power applications and when interfacing with parts that themselves run at 3.3V. In this guide, the 5V setup is configured with a 16MHz crystal oscillator, while the 3.3V configuration makes use of an 8MHz crystal oscillator.]]></summary></entry><entry><title type="html">How to set up ATSAM3X8E microcontrollers for bare-metal programming in C</title><link href="/blog/arduino-due/" rel="alternate" type="text/html" title="How to set up ATSAM3X8E microcontrollers for bare-metal programming in C" /><published>2024-10-05T00:00:00+08:00</published><updated>2024-10-05T00:00:00+08:00</updated><id>/blog/arduino-due</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This article is a step-by-step guide for programming bare-metal ATSAM3X8E chips found on Arduino Due boards. It also includes notes on the chip’s memory layout relevant for writing linker scripts. The steps described in this article were tested on an OpenBSD workstation.]]></summary></entry></feed> \ No newline at end of file
+<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/feed.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-11T22:00:02+08:00</updated><id>/feed.xml</id><title type="html">ASCIIMX | Blog</title><author><name>W. D. Sadeep Madurange</name></author><entry><title type="html">How I manage Suckless software installations</title><link href="/blog/suckless-software/" rel="alternate" type="text/html" title="How I manage Suckless software installations" /><published>2025-11-30T00:00:00+08:00</published><updated>2025-11-30T00:00:00+08:00</updated><id>/blog/suckless-software</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Since suckless software requires users to modify the source code and recompile to customize, I need a way to maintain patches over the long term while retaining the ability to upgrade the software as new versions are released.]]></summary></entry><entry><title type="html">Neo4J A* search</title><link href="/blog/neo4j-a-star-search/" rel="alternate" type="text/html" title="Neo4J A* search" /><published>2025-09-14T00:00:00+08:00</published><updated>2025-09-14T00:00:00+08:00</updated><id>/blog/neo4j-a-star-search</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Back in 2018, we used Neo4J graph database to track the movement of marine vessels. We were interested in the shortest path a ship could take through a network of about 13,000 route points. Algorithms based on graph theory, such as A* search, provide optimal solutions to such problems. In other words, the set of route points lends itself well to a model based on graphs.]]></summary></entry><entry><title type="html">MOSFETs as electronic switches</title><link href="/blog/mosfet-switches/" rel="alternate" type="text/html" title="MOSFETs as electronic switches" /><published>2025-06-22T00:00:00+08:00</published><updated>2025-06-22T00:00:00+08:00</updated><id>/blog/mosfet-switches</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[Recently, I needed a low-power circuit for one of my battery-operated projects. Much of the system’s power savings depended on its ability to electronically switch off components, such as servos, that draw high levels of quiescent currents. My search for a solution led me to MOSFETs, transistors capable of controlling circuits operating at voltages far above their own.]]></summary></entry><entry><title type="html">How to configure ATmega328P microcontrollers to run at 3.3V and 5V</title><link href="/blog/arduino-uno/" rel="alternate" type="text/html" title="How to configure ATmega328P microcontrollers to run at 3.3V and 5V" /><published>2025-04-10T00:00:00+08:00</published><updated>2025-04-10T00:00:00+08:00</updated><id>/blog/arduino-uno</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This is a quick reference for wiring up ATmega328P ICs to run at 5V and 3.3V. While the 5V configuration is common, the 3.3V configuration can be useful in low-power applications and when interfacing with parts that themselves run at 3.3V. In this guide, the 5V setup is configured with a 16MHz crystal oscillator, while the 3.3V configuration makes use of an 8MHz crystal oscillator.]]></summary></entry><entry><title type="html">How to set up ATSAM3X8E microcontrollers for bare-metal programming in C</title><link href="/blog/arduino-due/" rel="alternate" type="text/html" title="How to set up ATSAM3X8E microcontrollers for bare-metal programming in C" /><published>2024-10-05T00:00:00+08:00</published><updated>2024-10-05T00:00:00+08:00</updated><id>/blog/arduino-due</id><author><name>W. D. Sadeep Madurange</name></author><summary type="html"><![CDATA[This article is a step-by-step guide for programming bare-metal ATSAM3X8E chips found on Arduino Due boards. It also includes notes on the chip’s memory layout relevant for writing linker scripts. The steps described in this article were tested on an OpenBSD workstation.]]></summary></entry></feed> \ No newline at end of file
diff --git a/_site/posts.xml b/_site/posts.xml
index 99ed7ae..e303b1c 100644
--- a/_site/posts.xml
+++ b/_site/posts.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/posts.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-11T21:18:26+08:00</updated><id>/posts.xml</id><title type="html">ASCIIMX</title><author><name>W. D. Sadeep Madurange</name></author></feed> \ No newline at end of file
+<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.4.1">Jekyll</generator><link href="/posts.xml" rel="self" type="application/atom+xml" /><link href="/" rel="alternate" type="text/html" /><updated>2025-12-11T22:00:02+08:00</updated><id>/posts.xml</id><title type="html">ASCIIMX</title><author><name>W. D. Sadeep Madurange</name></author></feed> \ No newline at end of file
diff --git a/_site/projects/e-reader/index.html b/_site/projects/e-reader/index.html
index 9d26ee2..2e04274 100644
--- a/_site/projects/e-reader/index.html
+++ b/_site/projects/e-reader/index.html
@@ -67,13 +67,13 @@ minimize power consumption when not in use and records the reading progress in
the chip’s RTC memory.</p>
<p>The most formidable challenge when trying to build an e-reader with an ESP32
-board is its limited memory and storage. My ESP-WROOM-32 board has 512 KB of
-SRAM and 4 MB of flash memory, which the freeRTOS, ESP-IDF, and the e-reader
+board is its limited memory and storage. My ESP-WROOM-32 board has 512KB of
+SRAM and 4MB of flash memory, which the freeRTOS, ESP-IDF, and the e-reader
application must share. To put things into perspective, a Kindle Paperwhite has
-at least 256 MB of memory and 8 GB of storage.</p>
+at least 256MB of memory and 8GB of storage.</p>
<p>Despite its size, as microcontrollers go, ESP32 is a powerful system-on-a-chip
-with a 160 MHz dual-core processor and integrated WiFi. So, I thought it’d be
+with a 160MHz dual-core processor and integrated WiFi. So, I thought it’d be
amusing to embrace the constraints and build my e-reader using a $5 MCU and the
power of C programming.</p>
@@ -86,7 +86,7 @@ monochrome image of a page (a .ebm file).</p>
<p>The EBM file contains a series of bitmaps, one for each page of the book. The
dimensions of each bitmap are equal to the size of the display. Each byte of
the bitmap encodes information for rendering eight pixels. For my display,
-which has a resolution of 480x800, the bitmaps are laid out along 48 KB
+which has a resolution of 480x800, the bitmaps are laid out along 48KB
boundaries. This simple file format lends well to HTTP streaming, which is its
main advantage, as we will soon see.</p>