// ********************************************************************************** // Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H // ********************************************************************************** // Copyright Felix Rusu 2016, http://www.LowPowerLab.com/contact // ********************************************************************************** // License // ********************************************************************************** // This program is free software; you can redistribute it // and/or modify it under the terms of the GNU General // Public License as published by the Free Software // Foundation; either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will // be useful, but WITHOUT ANY WARRANTY; without even the // implied warranty of MERCHANTABILITY or FITNESS FOR A // PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // Licence can be viewed at // http://www.gnu.org/licenses/gpl-3.0.txt // // Please maintain this license information along with authorship // and copyright notices in any redistribution of this code // ********************************************************************************** // ********************************************************************************** // Converted to AVR environment by Zulkar Nayem // ********************************************************************************** #include #include #include "spi.h" #include "RFM69registers.h" #include "RFM69.h" #include "get_millis.h" volatile uint8_t DATALEN; volatile uint8_t SENDERID; volatile uint8_t TARGETID; // should match _address volatile uint8_t PAYLOADLEN; volatile uint8_t ACK_REQUESTED; volatile uint8_t ACK_RECEIVED; // should be polled immediately after sending a packet with ACK request volatile int16_t RSSI; // most accurate RSSI during reception (closest to the reception) volatile uint8_t mode = RF69_MODE_STANDBY; // should be protected? volatile uint8_t inISR = 0; uint8_t isRFM69HW = 1; // if RFM69HW model matches high power enable possible uint8_t address; //nodeID uint8_t powerLevel = 31; uint8_t promiscuousMode = 0; unsigned long millis_current; // freqBand must be selected from 315, 433, 868, 915 void rfm69_init(uint16_t freqBand, uint8_t nodeID, uint8_t networkID) { const uint8_t CONFIG[][2] = { /* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY }, /* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping /* 0x03 */ { REG_BITRATEMSB, RF_BITRATEMSB_55555}, // default: 4.8 KBPS /* 0x04 */ { REG_BITRATELSB, RF_BITRATELSB_55555}, /* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_50000}, // default: 5KHz, (FDEV + BitRate / 2 <= 500KHz) /* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_50000}, //* 0x07 */ { REG_FRFMSB, RF_FRFMSB_433}, //* 0x08 */ { REG_FRFMID, RF_FRFMID_433}, //* 0x09 */ { REG_FRFLSB, RF_FRFLSB_433}, /* 0x07 */ { REG_FRFMSB, (uint8_t) (freqBand==RF_315MHZ ? RF_FRFMSB_315 : (freqBand==RF_433MHZ ? RF_FRFMSB_433 : (freqBand==RF_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) }, /* 0x08 */ { REG_FRFMID, (uint8_t) (freqBand==RF_315MHZ ? RF_FRFMID_315 : (freqBand==RF_433MHZ ? RF_FRFMID_433 : (freqBand==RF_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) }, /* 0x09 */ { REG_FRFLSB, (uint8_t) (freqBand==RF_315MHZ ? RF_FRFLSB_315 : (freqBand==RF_433MHZ ? RF_FRFLSB_433 : (freqBand==RF_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) }, // looks like PA1 and PA2 are not implemented on RFM69W, hence the max output power is 13dBm // +17dBm and +20dBm are possible on RFM69HW // +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**) // +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)** // +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet) ///* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | RF_PALEVEL_OUTPUTPOWER_11111}, ///* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, // over current protection (default is 95mA) // RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4KHz) /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, // (BitRate < 2 * RxBw) //for BR-19200: /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 }, /* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 }, // DIO0 is the only IRQ we're using /* 0x26 */ { REG_DIOMAPPING2, RF_DIOMAPPING2_CLKOUT_OFF }, // DIO5 ClkOut disable for power saving /* 0x28 */ { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN }, // writing to this bit ensures that the FIFO & status flags are reset /* 0x29 */ { REG_RSSITHRESH, 220 }, // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm ///* 0x2D */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE } // default 3 preamble bytes 0xAAAAAA /* 0x2E */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_2 | RF_SYNC_TOL_0 }, /* 0x2F */ { REG_SYNCVALUE1, 0x2D }, // attempt to make this compatible with sync1 byte of RFM12B lib /* 0x30 */ { REG_SYNCVALUE2, networkID }, // NETWORK ID /* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE | RF_PACKET1_DCFREE_OFF | RF_PACKET1_CRC_ON | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF }, /* 0x38 */ { REG_PAYLOADLENGTH, 66 }, // in variable length mode: the max frame size, not used in TX ///* 0x39 */ { REG_NODEADRS, nodeID }, // turned off because we're not using address filtering /* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent) //for BR-19200: /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent) /* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 }, // run DAGC continuously in RX mode for Fading Margin Improvement, recommended default for AfcLowBetaOn=0 {255, 0} }; spi_init(); // spi initialize //DDRC |= 1<> 16); writeReg(REG_FRFMID, freqHz >> 8); writeReg(REG_FRFLSB, freqHz); if (oldMode == RF69_MODE_RX) { setMode(RF69_MODE_SYNTH); } setMode(oldMode); } // Read byte from register uint8_t readReg(uint8_t addr) { select(); spi_fast_shift(addr & 0x7F); uint8_t regval = spi_fast_shift(0); unselect(); return regval; } // Write byte to register void writeReg(uint8_t addr, uint8_t value) { select(); spi_fast_shift(addr | 0x80); spi_fast_shift(value); unselect(); } // To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP"); // To disable encryption: encrypt(null) or encrypt(0) // KEY HAS TO BE 16 bytes !!! void encrypt(const char* key) { setMode(RF69_MODE_STANDBY); if (key != 0) { select(); spi_fast_shift(REG_AESKEY1 | 0x80); for (uint8_t i = 0; i < 16; i++) spi_fast_shift(key[i]); unselect(); } writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (key ? 1:0)); } void setMode(uint8_t newMode) { if (newMode == mode) return; switch (newMode) { case RF69_MODE_TX: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER); if (isRFM69HW) setHighPowerRegs(1); break; case RF69_MODE_RX: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER); if (isRFM69HW) setHighPowerRegs(0); break; case RF69_MODE_SYNTH: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER); break; case RF69_MODE_STANDBY: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY); break; case RF69_MODE_SLEEP: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP); break; default: return; } // we are using packet mode, so this check is not really needed // but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode while (mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady mode = newMode; } // internal function void setHighPowerRegs(uint8_t onOff) { if(onOff==1) { writeReg(REG_TESTPA1, 0x5D); writeReg(REG_TESTPA2, 0x7C); } else { writeReg(REG_TESTPA1, 0x55); writeReg(REG_TESTPA2, 0x70); } } // for RFM69HW only: you must call setHighPower(1) after rfm69_init() or else transmission won't work void setHighPower(uint8_t onOff) { isRFM69HW = onOff; writeReg(REG_OCP, isRFM69HW ? RF_OCP_OFF : RF_OCP_ON); if (isRFM69HW == 1) // turning ON writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0x1F) | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON); // enable P1 & P2 amplifier stages else writeReg(REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | powerLevel); // enable P0 only } // get the received signal strength indicator (RSSI) int16_t readRSSI(uint8_t forceTrigger) { int16_t rssi = 0; if (forceTrigger==1) { // RSSI trigger not needed if DAGC is in continuous mode writeReg(REG_RSSICONFIG, RF_RSSI_START); while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // wait for RSSI_Ready } rssi = -readReg(REG_RSSIVALUE); rssi >>= 1; return rssi; } // internal function void sendFrame(uint8_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t requestACK, uint8_t sendACK) { setMode(RF69_MODE_STANDBY); // turn off receiver to prevent reception while filling fifo while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady //writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent" if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN; // control byte uint8_t CTLbyte = 0x00; if (sendACK==1) CTLbyte = RFM69_CTL_SENDACK; else if (requestACK==1) CTLbyte = RFM69_CTL_REQACK; if (toAddress > 0xFF) CTLbyte |= (toAddress & 0x300) >> 6; //assign last 2 bits of address if > 255 if (address > 0xFF) CTLbyte |= (address & 0x300) >> 8; //assign last 2 bits of address if > 255 // write to FIFO select(); //enable data transfer spi_fast_shift(REG_FIFO | 0x80); spi_fast_shift(bufferSize + 3); spi_fast_shift(toAddress); spi_fast_shift(address); spi_fast_shift(CTLbyte); for (uint8_t i = 0; i < bufferSize; i++) spi_fast_shift(((uint8_t*) buffer)[i]); unselect(); // no need to wait for transmit mode to be ready since its handled by the radio setMode(RF69_MODE_TX); //millis_current = millis(); //_delay_ms(500); // wait for DIO to high // for PINE5 //while (bit_is_clear(INT_PIN, INT_pin_num) && millis() - millis_current < RF69_TX_LIMIT_MS); while ((readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT) == 0x00); // wait for PacketSent setMode(RF69_MODE_STANDBY); } // Calibrate RC void rcCalibration() { writeReg(REG_OSC1, RF_OSC1_RCCAL_START); while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00); } uint8_t sendWithRetry(uint8_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t retries, uint8_t retryWaitTime) { for (uint8_t i = 0; i <= retries; i++) { send(toAddress, buffer, bufferSize, 1); millis_current = millis(); while (millis() - millis_current < retryWaitTime) { if (ACKReceived(toAddress)) { return 1; } } } return 0; } // should be polled immediately after sending a packet with ACK request uint8_t ACKReceived(uint8_t fromNodeID) { if (receiveDone()) return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED; return 0; } // checks if a packet was received and/or puts transceiver in receive (ie RX or listen) mode uint8_t receiveDone() { cli(); if (mode == RF69_MODE_RX && PAYLOADLEN > 0) { setMode(RF69_MODE_STANDBY); // enables interrupts return 1; } else if (mode == RF69_MODE_RX) // already in RX no payload yet { sei(); // explicitly re-enable interrupts return 0; } receiveBegin(); sei(); return 0; } // internal function void receiveBegin() { DATALEN = 0; SENDERID = 0; TARGETID = 0; PAYLOADLEN = 0; ACK_REQUESTED = 0; ACK_RECEIVED = 0; RSSI = 0; if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY) writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); // set DIO0 to "PAYLOADREADY" in receive mode setMode(RF69_MODE_RX); } // 1 = disable filtering to capture all frames on network // 0 = enable node/broadcast filtering to capture only frames sent to this/broadcast address void promiscuous(uint8_t onOff) { promiscuousMode = onOff; if(promiscuousMode==0) writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | RF_PACKET1_ADRSFILTERING_NODEBROADCAST); else writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | RF_PACKET1_ADRSFILTERING_OFF); } // Only reenable interrupts if we're not being called from the ISR void maybeInterrupts() { if (!inISR) sei(); } // Enable SPI transfer void select() { SS_PORT &= ~(1<66) PAYLOADLEN=66; TARGETID = spi_fast_shift(0); if(!(promiscuousMode || TARGETID == address || TARGETID == RF69_BROADCAST_ADDR) // match this node's address, or broadcast address or anything in promiscuous mode || PAYLOADLEN < 3) // address situation could receive packets that are malformed and don't fit this libraries extra fields { PAYLOADLEN = 0; unselect(); receiveBegin(); return; } DATALEN = PAYLOADLEN - 3; SENDERID = spi_fast_shift(0); uint8_t CTLbyte = spi_fast_shift(0); ACK_RECEIVED = CTLbyte & RFM69_CTL_SENDACK; // extract ACK-received flag ACK_REQUESTED = CTLbyte & RFM69_CTL_REQACK; // extract ACK-requested flag //interruptHook(CTLbyte); // TWS: hook to derived class interrupt function for (uint8_t i = 0; i < DATALEN; i++) { DATA[i] = spi_fast_shift(0); } if (DATALEN < RF69_MAX_DATA_LEN) DATA[DATALEN] = 0; // add null at end of string unselect(); setMode(RF69_MODE_RX); } RSSI = readRSSI(0); inISR = 0; }