#include #include #include #include #include #include #include "fpm.h" #define FRONT_UNLOCK_PIN PD2 #define FRONT_LOCK_PIN PD3 #define ENROLL_PIN PD4 #define BACK_LOCK_PIN PD5 #define BACK_UNLOCK_PIN PD6 #define INPUT_DDR DDRD #define INPUT_PORT PORTD #define FPM_UNLOCK_INT INT0 #define FPM_INT_VEC INT0_vect #define FRONT_LOCK_INT PCINT19 #define ENROLL_INT PCINT20 #define BACK_LOCK_INT PCINT21 #define BACK_UNLOCK_INT PCINT22 #define BTN_INT_VEC PCINT2_vect #define SERVO_PIN PB1 #define SERVO_DDR DDRB #define PWM_MIN 500 #define PWM_MID 1600 #define PWM_MAX 2550 #define PWM_TOP 20000 #define VCC_MIN 4900 #define LED_PIN PB5 #define LED_DDR DDRB #define LED_PORT PORTB /* Measure vcc by measuring known internal 1.1v bandgap * reference voltage against AVCC. */ uint16_t getvcc(void) { uint16_t vcc; ADMUX |= (1 << REFS0); ADMUX |= (1 << MUX3) | (1 << MUX2) | (1 << MUX1); ADCSRA |= (1 << ADEN) | (1 << ADPS2) | (1 << ADPS0); // https://www.sciencetronics.com/greenphotons/?p=1521 _delay_us(500); ADCSRA |= (1 << ADSC); while (ADCSRA & (1 << ADSC)) ; vcc = (1100UL * 1023 / ADC); ADCSRA &= ~(1 << ADEN); return vcc; } static inline void lock(void) { OCR1A = PWM_MID; _delay_ms(100); OCR1A = PWM_TOP; } static inline void unlock(void) { OCR1A = PWM_MAX; _delay_ms(100); OCR1A = PWM_TOP; } int main(void) { /* disable watchdog timer */ cli(); wdt_reset(); MCUSR &= ~(1 << WDRF); WDTCSR |= (1 << WDCE) | (1 << WDE); WDTCSR = 0x00; /* battery check */ LED_DDR |= (1 << LED_PIN); LED_PORT &= ~(1 << LED_PIN); for (int i = 0; i < 4; i++) { LED_PORT |= (1 << LED_PIN); _delay_ms(70); LED_PORT &= ~(1 << LED_PIN); _delay_ms(70); } /* init input ports */ INPUT_DDR &= ~((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) | (1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) | (1 << ENROLL_PIN)); INPUT_PORT |= ((1 << BACK_LOCK_PIN) | (1 << BACK_UNLOCK_PIN) | (1 << FRONT_LOCK_PIN) | (1 << FRONT_UNLOCK_PIN) | (1 << ENROLL_PIN)); EICRA = 0b00000000; EIMSK = (1 << FPM_UNLOCK_INT); PCICR |= (1 << PCIE2); PCMSK2 |= ((1 << FRONT_LOCK_INT) | (1 << ENROLL_INT) | (1 << BACK_LOCK_INT) | (1 << BACK_UNLOCK_INT)); /* init servo */ ICR1 = PWM_TOP; TCCR1A |= (1 << WGM11) | (1 << COM1A1); TCCR1B |= (1 << WGM13) | (1 << CS11); SERVO_DDR |= (1 << SERVO_PIN); fpm_init(); sei(); for (;;) { } return 0; } static inline int is_pressed(uint8_t btn) { if (!((PIND >> btn) & 0x01)) { _delay_ms(50); return !((PIND >> btn) & 0x01); } return 0; } ISR(FPM_INT_VEC) { cli(); if (fpm_match()) { unlock(); fpm_led(BREATHE, BLUE, 1); } else { fpm_led(BREATHE, RED, 1); } sei(); } ISR(BTN_INT_VEC) { uint16_t id; cli(); if (is_pressed(FRONT_LOCK_PIN)) { lock(); fpm_led(FLASH, RED, 1); } else if (is_pressed(BACK_LOCK_PIN)) { lock(); fpm_led(FLASH, RED, 1); } else if (is_pressed(BACK_UNLOCK_PIN)) { unlock(); fpm_led(FLASH, BLUE, 1); } else if (is_pressed(ENROLL_PIN)) { id = fpm_match(); if (id == 1 || id == 2) { fpm_led(BREATHE, BLUE, 1); _delay_ms(1000); if (fpm_enroll()) fpm_led(BREATHE, BLUE, 1); else fpm_led(BREATHE, RED, 1); } else fpm_led(BREATHE, RED, 1); } sei(); }